SURDS

Learn these rules of surds

1.
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

3.
$$m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$$

Examples for discussion

- 1. Write $\sqrt{63}$ as the simplest possible surd.
- 2. Simplify $\sqrt{50} + \sqrt{2} 2\sqrt{18} + \sqrt{8}$
- 3. Simplify $(3+\sqrt{2})(3-\sqrt{2})$

Rationalising a surd

Sometimes surds can appear as denominators in a fraction and are best avoided. The process of clearing surds is called rationalisation.

Examples

Rationalise the denominators of

(a)
$$\frac{1}{\sqrt{2}}$$

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{9}{\sqrt{3}}$ (c) $\frac{1}{2+\sqrt{2}}$

(a)
$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 (multiply top and bottom by $\sqrt{2}$)

(b)
$$\frac{9}{\sqrt{3}} = \frac{9\sqrt{3}}{3} = 3\sqrt{3}$$

(c)
$$\frac{1}{2+\sqrt{2}} = \frac{1(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})} = \frac{2-\sqrt{2}}{4-2} = \frac{2-\sqrt{2}}{2} = 1 - \frac{1}{2}\sqrt{2}$$

Questions to work through

1. Express these in the form A + B \sqrt{C} where A, B and C are rational.

(i)
$$\left(\sqrt{3} - 1\right)^2$$
 (ii) $\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{4}} + \sqrt{\frac{1}{8}}$

$$\frac{\sqrt{6} + \sqrt{3}}{\sqrt{6} - \sqrt{3}}$$

- 3. A rectangle has sides of length $2\sqrt{3}$ cm and $3\sqrt{3}$ cm. Find in surd form,
 - (i) The perimeter
 - (ii) The area
 - (iii) The diagonal length.
- 4. Find the height of an equilateral triangle of side $4\sqrt{2}$ cm, in surd form.
- 5. Solve the equation, giving x in the form A + B \sqrt{C}

(i)
$$(\sqrt{2}-1)x = 4$$
 (ii) $\sqrt{3}x = x + \sqrt{3}$

REMEMBER THAT ALL SURDS QUESTIONS SHOULD BE TACKLED WITHOUT THE USE OF A CALCULATOR.

INDICES

Learn these rules of indices

$$1. \quad a^m \times a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

$$4. \qquad a^{\frac{1}{2}} = \sqrt{a}$$

and $a^{\frac{1}{n}} = \sqrt[n]{a}$

and $a^{\frac{m}{n}} = (\sqrt[n]{a})^n$

5.
$$a^0 = 1$$

$$_{6.} \qquad a^{-n} = \frac{1}{a^n}$$

Examples to discuss

(i) Evaluate the following:

(a)
$$64^{\frac{1}{2}}$$

(b)
$$2^{-3}$$

(c)
$$27^{-\frac{2}{3}}$$

(d)
$$\left(\frac{1}{8}\right)^{-\frac{2}{3}}$$

(ii) Simply the following:

(a)
$$(2x^3)^2$$

(b)
$$\left(\sqrt{x}\right)^{\frac{2}{3}}$$

(c)
$$\frac{6x^2y^{-3}}{2x^5y^4}$$

EQUATIONS WITH INDICES

Many equations in maths will contain indices of a rational type. It is important that you can manipulate the algebra by employing the rules of indices where necessary.

Examples for discussion

Solve these equations involving indices:

(a)
$$x^{\frac{1}{2}} = 6$$

(b)
$$2x^3 = -54$$

.....

(c)
$$2^{2x-6} = 16^x$$
 Tip: Equate powers

.....

.....

(d)
$$x^{\frac{3}{4}} = 8$$

.....

